Transparent Conducting Films Explained

Written by: Denton Vacuum, LLC

Summary: Learn how transparent conducting films are made.

Have you ever wondered how your LCD screen computer monitor works? One of the major components to those screens is what is called “transparent conducting film”, which power many important devices in our everyday lives. These films go through a process much like vacuum metallization to apply the base layer of conductive materials.

The process uses a combination of both organic and inorganic materials in photovoltaic mechanisms. Inorganic layers consist of transparent conducting oxide, which usually comes in the form of indium tin oxide. Organic films are also possible, but they require the use of carbon nanotube networks made of graphene. A magnetron sputtering system bonds the materials to the film, which allows light to pass through.

How TCFs Work

TCFs pass light through materials, and have applications in the photovoltaic realm as well. These films allow wavelengths of a certain nanometer to pass through. If the spectrum falls outside of that nanometer range, then the light is blocked. This is called the “bandgap” and it’s an essential function in screens. However, photovoltaic cells must absorb as much light as possible.

The metal oxides necessary for this whole process to work have to be grown on a glass substrate. Apart from being the ideal surface for the materials to grow on, the glass has an added benefit. It blocks certain wavelengths by default, converting that light to heat instead.

In addition to magnetron sputtering, PVD coating equipment can also deposit materials on the substrate. However, magnetron sputtering proves far more economical when used in AZO thin film deposition.

Comments are closed, but trackbacks and pingbacks are open.