DNA Storage: How Harvard Stored Data on DNA

Summary: Using binary, we may be able to encode information on DNA.

Imagine a future where our information is stored inside of us. Sounds very science fiction like, but researchers at Harvard are making breakthroughs in that very field. Utilizing oligos, the team is using DNA as a binary storage device that they can write code to. The team can encode anything, using binary as a method of communication.

DNA Coding

During oligo synthesis, synthetic strands are used like a printer. The “ink” in this case are the TG AC bases. If we take TG to mean “1” and AC to mean “0” we have the basis for binary communication. The sequence is encoded in binary. When the DNA strand is re-sequenced, the researchers are able to detect the binary code and store a whopping 700 terabytes of information for every gram of DNA.

The question is why anyone would think to store information inside of our DNA anyway.

Pros to DNA Storage

DNA storage has been on people’s minds for some time. You can store a surprisingly large amount of information in a relatively small space, and it’s durable too. DNA can survive for thousands of years in a box sitting in someone’s shed or in a warehouse.

The trouble has always been our ability, or lack thereof, to read DNA. The human genome consists of 3-billion base pairs, which we can only now begin to read for the first time. And it still takes hours of time.

This technology has a long way to go, but the future of DNA storage looks very bright.

Bio: The Midland Certified Reagent Company manufactures oligos, RNA polymers and synthetic materials used in medical research and experimentation. To order synthetic DNA, RNA or phosphorothioates, contact The Midland Certified Reagent Company.

Comments are closed, but trackbacks and pingbacks are open.